(作者君在作品相关中已经解释过这个问题,并在此列出相关参考文献中的一篇开源论文。以下是文章内容:Long-termintegrationsandstabilityofplanetaryorbitsinourSolarsystemAbstractWepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.Aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.Acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofMercury.ThebehaviouroftheeccentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskar‘ssecularperturbationtheory(e.g.emax0.35over±4Gyr).However,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.Wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5×1010yr.TheresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span.1Introduction1.1DefinitionoftheproblemThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofNewton.Theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.However,wedonotyethaveadefiniteanswertothequestionofwhetherourSolarsystemisstableornot.Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotionintheSolarsystem.Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsystem.Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,butofinstability.Wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&BossIto&Tanikawa1999).AsystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerHillradius.Otherwisethesystemisdefinedasbeingstable.HenceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±5Gyr.Incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.Thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(Yoshinaga,Kokubo&Makino1999).OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosystem.1.2PreviousstudiesandaimsofthisresearchInadditiontothevaguenessoftheconceptofstability,theplanetsinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992).Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&HolmanLecar,Franklin&Holman2001).However,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(Sussman&WisdomKinoshita&Nakai1996).Thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.Atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(199.Althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto1011yroftheorbitalmotionsofthefourjovianplanets.TheinitialorbitalelementsandmassesofplanetsarethesameasthoseofourSolarsysteminDuncan&Lissauer‘spaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments.Thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.Consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun.WhenthemassoftheSunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.Duncan&Lissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(VenustoNeptune),whichcoveraspanof109yr.Theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.Ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar198,Laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar‘ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5×1010yr.Thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedPCsandworkstations.Oneofthefundamentalconclusionsofourlong-termintegrationsisthatSolarsystemplanetarymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr.Actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofSolarsystemplanetarymotion.Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.Verylong-termstabilityofSolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiven.Section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.InSection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5×1010yr.InSection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.2Descriptionofthenumericalintegrations(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)2.3NumericalmethodWeutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&HolmanKinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994).Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostplanet(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,sincetheeccentricityofJupiter(0.05)ismuchsmallerthanthatofMercury(0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d.WeadoptGauss‘fandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.ThenumberofmaximumiterationswesetinHalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.Theintervalofthedataoutputis200000d(547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(21903yr)fortheintegrationoftheouterfiveplanets(F±).Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.SeeSection4.1formoredetail.2.4Errorestimation2.4.1RelativeerrorsintotalenergyandangularmomentumAccordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(109)andoftotalangularmomentum(1011)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr.Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision.2.4.2ErrorinplanetarylongitudesSincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.Toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.Forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(1/64ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN1integration.Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.Next,wecomparethetestintegrationwiththemainintegration,N1.Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof0.52°(inthecaseoftheN1integration).Thisdifferencecanbeextrapolatedtothevalue8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.Similarly,thelongitudeerrorofPlutocanbeestimatedas12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas60°.3Numericalresults–I.GlanceattherawdataInthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.Theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.3.1GeneraldescriptionofthestabilityofplanetaryorbitsFirst,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.Ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.AswecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralGyr.Thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.Verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±1.Theaxesunitsareau.Thexy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum.(a)TheinitialpartofN+1(t=0to0.0547×109yr).(b)ThefinalpartofN+1(t=4.9339×108to4.9886×109yr).(c)TheinitialpartofN1(t=0to0.0547×109yr).(d)ThefinalpartofN1(t=3.9180×109to3.9727×109yr).Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47×107yr.Solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromDE245).ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+1isshowninFig.4.Asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars.TheelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent.Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplatheinnermostplanetmaybenearesttoinstability.ThisresultappearstobeinsomeagreementwithLaskar‘s(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury.Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements.Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5).3.2Time–frequencymapsAlthoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans.Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.Berger198.Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar‘s(1990,1993)frequencyanalysis.Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength.Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT.Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδTT.WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength.WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams.Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.Thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes).Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+2integration.InFig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration.Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.4.2Long-termexchangeoforbitalenergyandangularmomentumWecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H.GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=μ2/2L2.Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.Non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.InFig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN+2.Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheverticalcomponent(H-H0)oftheinnerfourplanetscalculatedfromthelow-passfilteredDelaunayelements.E0,G0,H0denotetheinitialvaluesofeachquantity.Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineplanets.Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.Thiscanbeseeninthepanelsdenotedasinner4inFig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury.However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections.4.4Long-termcouplingofseveralneighbouringplanetpairsLetusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements.Figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN+1andN2integrations.Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.Inparticular,VenusandEarthmakeatypicalpair.Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations.CandidatesforperturbersareJupiterandSaturn.AlsoinFig.11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem.MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem.ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange.Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf.Brouwer&ClemenceBoccaletti&Pucacco199.Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe).Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange.Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets.ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair.Asfortheouterjovianplanetarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs.However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus–Earthpair.5±5×1010-yrintegrationsofouterplanetaryorbitsSincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability.Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto).Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span.Orbitalconfigurations(Fig.12),andvariationofeccentricitiesandinclinations(Fig.13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains.Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage.Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas106andthatofthetotalangularmomentumwas1010.5.1ResonancesintheNeptune–PlutosystemKinoshita&Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5.5×109yr.TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto.Themajorfourresonancesfoundinpreviousresearchareasfollows.Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeandisthelongitudeofperihelion.SubscriptsPandNdenotePlutoandNeptune.MeanmotionresonancebetweenNeptuneandPluto(3:2).Thecriticalargumentθ1=3λP2λNPlibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr.TheargumentofperihelionofPlutoωP=θ2=PΩPlibratesaround90°withaperiodofabout3.8×106yr.ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion.ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962).ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩPΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.Whenθ3becomeszero,i.e.thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989).Anargumentθ4=PN+3(ΩPΩN)libratesaround180°withalongperiod,5.7×108yr.Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16).However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig.17).ThisisaninterestingfactthatKinoshita&Nakai‘s(1995,1996)shorterintegrationswerenotabletodisclose.6DiscussionWhatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystemWecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.Higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem.Thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Ito&Tanikawa1999,2001).WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH.Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets.Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.Jovianplanetsarenotperturbedbyanyothermassivebodies.Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets.However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffecthedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ).Heighteningofeccentricity,forexampleO(eJ)0.05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH.Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span.Ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofSolarsystemplanetarymotionisnowon-going.AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics.——以上文段引自Ito,T.&Tanikawa,K.Long-termintegrationsandstabilityofplanetaryorbitsinourSolarSystem.Mon.Not.R.Astron.Soc.336,483–500(2002)这只是作者君参考的一篇文章,关于太阳系的稳定性。还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。 , )